2,200 research outputs found

    The observation of Extensive Air Showers from an Earth-Orbiting Satellite

    Full text link
    In this paper we review the main issues that are relevant for the detection of Extensive Air Showers (EAS) from space. EAS are produced by the interaction of Ultra-High Energy Cosmic Particles (UHECP) with the atmosphere and can be observed from an orbiting telescope by detecting air fluorescence UV light. We define the requirements and provide the main formulas and plots needed to design and optimize a suitable telescope. We finally estimate its expected performances in ideal conditions.Comment: 24 pages, 10 figures; submitted to Astroparticle Physics 27 pages, 14 figures; major revision; added new figures and sections; typos fixed. arXiv admin note: substantial text overlap with arXiv:0810.571

    Contemporaneous XMM-Newton investigation of a giant X-ray flare and quiescent state from a cool M-class dwarf in the local cavity

    Full text link
    We report the serendipitous detection of a giant X-ray flare from the source 2XMM J043527.2-144301 during an XMM-Newton observation of the high latitude molecular cloud MBM20. The source has not been previously studied at any wavelength. The X-ray flux increases by a factor of more than 52 from quiescent state to peak of flare. A 2MASS counterpart has been identified (2MASS J04352724-1443017), and near-infrared colors reveal a spectral type of M8-M8.5 and a distance of (67\pm 13) pc, placing the source in front of MBM20. Spectral analysis and source luminosity are also consistent with this conclusion. The measured distance makes this object the most distant source (by about a factor of 4) at this spectral type detected in X-rays. The X-ray flare was characterized by peak X-ray luminosity of ~8.2E28 erg s-1 and integrated X-ray energy of ~2.3E32 erg. The flare emission has been characterized with a 2-temperature model with temperatures of ~10 and 46 MK (0.82 and 3.97 keV), and is dominated by the higher temperature component.Comment: 19 pages, 5 figures; Accepted for publication on Ap

    Higher-order QED corrections to single-W production in electron-positron collisions

    Get PDF
    Four-fermion processes with a particle lost in the beam pipe are studied at LEP to perform precision tests of the electroweak theory. Leading higher-order QED corrections to such processes are analyzed within the framework of the Structure Functions (SF) approach. The energy scale entering the QED SF is determined by inspection of the soft and collinear limit of the O(alpha) radiative corrections to the four-fermion final states, paying particular attention to the process of single-W production. Numerical predictions are shown in realistic situations for LEP experiments and compared with existing results. A Monte Carlo event generator, including exact tree-level matrix elements, vacuum polarization, higher-order leading QED corrections and anomalous trilinear gauge couplings, is presented.Comment: LaTeX (using elsart), 21 pages, 8 .ps figure

    Light Pair Correction to Bhabha Scattering at Small Angle

    Get PDF
    This work deals with the computation of electron pair correction to small angle Bhabha scattering, in order to contribute to the improvement of luminometry precision at LEP/SLC below 0.1% theoretical accuracy. The exact QED four-fermion matrix element for e+e−→e+e−e+e−e^+e^-\to e^+e^-e^+e^-, including all diagrams and mass terms, is computed and different Feynman graph topologies are studied to quantify the error of approximate calculations present in the literature. Several numerical results, obtained by a Monte Carlo program with full matrix element, initial-state radiation via collinear structure functions, and realistic event selections, are shown and critically compared with the existing ones. The present calculation, together with recent progress in the sector of O(α2)O(\alpha^2) purely photonic corrections, contributes to achieve a total theoretical error in luminometry at the 0.05% level, close to the current experimental precision and important in view of the final analysis of the electroweak precision data.Comment: LaTeX2e, 28 pages, 8 figures include

    Light-Pair Corrections to Small-Angle Bhabha Scattering in a Realistic Set-up at LEP

    Get PDF
    Light-pair corrections to small-angle Bhabha scattering have been computed in a realistic set-up for luminosity measurements at LEP. The effect of acollinearity and acoplanarity rejection criteria has been carefully analysed for typical calorimetric event selections. The magnitude of the correction, depending on the details of the considered set-up, is comparable with the present experimental error.Comment: 6 pages, LaTeX (elsart.sty), 4 tables, 1 figur

    One-step preparation of enantiopure L- or D-amino acid benzyl esters avoiding the use of banned solvents

    Get PDF
    The enantiomers of amino acid benzyl esters are very important synthetic intermediates. Many of them are currently prepared by treatment with benzyl alcohol and p-toluenesulfonic acid in refluxing benzene or carbon tetrachloride, to azeotropically remove water, and then precipitated as tosylate salt by adding diethyl ether. Here, we report a very efficient preparation of eight l- or d-amino acid benzyl esters (Ala, Phe, Tyr, Phg, Val, Leu, Lys, Ser), in which these highly hazardous solvents are dismissed using cyclohexane as a water azeotroping solvent and ethyl acetate to precipitate the tosylate salt. With some work-up modifications and lower yield, the procedure can be applied also to methionine. Chiral HPLC analysis shows that all the benzyl esters, including the highly racemizable ones such as those of phenylglycine, tyrosine and methionine, are formed enantiomerically pure under these new reaction conditions thus validating the solvents replacement. Contrariwise, toluene cannot be used in place of benzene or carbon tetrachloride because leading to partially or totally racemized amino acid benzyl esters depending on the polar effect of the amino acid \u3b1-side chain as expressed by Taft\u2019s substituent constant (\u3c3*)
    • 

    corecore